
Haptic Virtual Fixture for Teleoperation of a CNC
Welding Machine

Jaffer Ali Aidan Rosenbaum

Abstract—This paper implements a haptic virtual fixture for
a teleoperated CNC welding machine. A 2-degree-of-freedom
pantograph device is used to translate user position to machine
movement. The pantograph applies kinesthetic force feedback
to maintain the users cursor position along a predefined virtual
fixture. Two optical encoders are used to track user position
while two DC motors are used to apply force feedback. Sensors
and actuators are controlled through a single Arduino which
communicates with the CNC machine over serial. The results
of our paper demonstrate the potential effectiveness of virtual
fixtures for teleoperated robotics.

I. INTRODUCTION

Integrating force feedback in teleoperated robotic systems
provides important information to the operator when perform-
ing certain tasks. For example, teleoperated surgical robots
implement force feedback systems to ensure that operators
do not apply excessive force in certain areas. Traditional
force feedback systems uses force sensors to detect the robots
contact with objects and provide feedback to the user. This
feedback can improve operator performance but does not
prevent an operator from moving into certain areas completely.
Virtual fixtures are one solution that can help solve this
problem. A virtual fixture renders haptic feedback to ensure
that a user stays within certain bounds or is following a
predefined path. For robotic surgery, certain areas may be
restricted and if the operator attempts to move into them
they are met with a force feedback pushing them away. For
something like teleoperated robotic welding, a virtual fixture
can ensure that the operator is welding along the correct path.
In this paper we use an open source 2-degree-of-freedom
pantograph device called the Graphkit to teleoperate a CNC
machine. Using forward and inverse kinematics along with the
Jacobian we were able to teleoperate a 3-axis CNC Welding
machine in 2D space and render a virtual fixture of a potential
weld path.

II. BACKGROUND

Our pantograph is based off of the 2-degree-of-freedom
Graphkit developed in [1]. Previous work has been done
with different types of virtual fixtures in robotic surgery
applications [2].

III. METHODS

A. Hardware Design and Implementation

The 2-degree-of-freedom Graphkit was built using 2 1-
degree-of-freedom hapkits. The pantograph is a 5 bar linkage
with link lengths a1 = 5, a2 = 6, a3 = 6, a4 = 5, a5 = 2.5.

The linkage drives two capstan drives which are connected to
corresponding motors and optical encoders which provide the
force feedback and rotary position data respectively. An Ar-
duino 101 is used to calculate xy-positions of the pantograph
end effector using forward kinematics. The Arduino calculates
the necessary forces using the Jacobian and provides force
feedback to the DC motors using pulse-width-modulation. To
connect to the CNC welding machine, the Arduino writes xy-
positions over serial to a python script on a separate laptop.
The python script scales the position data and converts the
position data to G-Code which is sent over serial to the CNC
machine. For live demonstration purposes, a pen was used
instead of a welder as the end effector on the CNC machine.

B. Control

Forward kinematics were implemented to derive the end-
effector position (x3, y3) given angles θ and α from the Hapkit
encoders [3]. The values of these equations were then tested
against a Solidworks model of our system. An image of the
geometry of our pantograph robot is shown below:

Figure 1: Pantograph Model

The corresponds forward kinematic equations are given
below:

P2 = (x2, y2) = (a1cos(θ), a1sin(θ)) (1)

P4 = (x4, y4) = (a4cos(α), a4sin(α)) (2)

P24 = ∥P4 − P2∥ (3)

P2h =
(a22 − a23 + P 2

24)

2P24
(4)

P3h = ∥L2 − P2h∥ (5)

xh = x2 + (
P2h

P24
)(x4 − x2) (6)

yh = y2 + (
P2h

P24
)(y4 − y2) (7)

x3 = xh + (
P3h

P24
)(y4 − y2) (8)

y3 = yh − (
P3h

P24
)(x4 − x2) (9)

We then calculated the Jacobian to translate reaction forces
in the xy-space to our motors.

τ = JTF (10)

Supplemental to these calculations, we also derived the
velocity every 30ms with a filter. From experimentation, we
decided a 90/10 filter would work best.

On the machine-side, position scaling was also implemented
to increase the available range of our system:

xmachine = kscale ∗ (x3 − x0) (11)

ymachine = kscale ∗ (y3 − y0) (12)

Where kscale is the scaling factor, and (x0, y0) is the zero
position.

vx =
dx

dt
=

(x− xlast)

.030
(13)

vy =
dy

dt
=

(y − ylast)

.030
(14)

vfiltered = v ∗ .9 + vlast ∗ .1 (15)

Where vlast, xlast, and ylast are the previous sampled
values in the loop.

Using these velocity values, we are able to apply a damping
force to the x and y axis of the machine. During forcefielding,
this damping is removed.

Fx = b ∗ vx (16)

Fy = b ∗ vy (17)

Where b is the damping coefficient of the machine.
Position clutching was also implemented to increase the

available workspace of the machine. This was done by re-
setting (x0, y0) to the current position once the user releases
the clutching button.

C. Virtual Fixture Rendering

The virtual fixture that we rendered was a horizontal line.
We defined the line with two xy coordinate pairs in the pan-
tograph workspace. We calculated the shortest distance from
the line to the current end effector position using Equation 18
which allowed us to enable the virtual fixture when the user
got close to the line. If the user was far enough away from
the line, Fx = 0 and Fy = 0. The constants a, b and c are
coefficients for the given line equation. The force applied to
the user was given by Equations 19 and 20 where k was a

constant multiplied by the difference in position between the
current end effector position and the closest point on the line.

d =
|ax0 + by0 + c|√

a2 + b2
(18)

xclosest =
b(bx0 − ay0)− ac

a2 + b2
(19)

yclosest =
a(−bx0 + ay0)− bc

a2 + b2
(20)

Fx = −k(xcurrent − xclosest) (21)

Fy = −k(ycurrent − yclosest) (22)

IV. RESULTS AND DISCUSSION

We were able to successfully implement position tracking
as well as virtual fixturing. In implementing position damping,
we ran into limitations with the processing capabilities of our
hardware, resulting in instability at damping levels adequate
for our machine. A plot of our full workspace as measured on
the machine is in Figure [2]. We found a scale of 10 was the
limit before issues with quantization occurred.

Figure 2: The full workspace measured

Users were able to distinguish the virtual fixture in the
environment, and often mistaken it for an actual physical
limitation of the device. a rendered plot of our virtual fixture
is shown in Figure [3].

Figure 3: Rendered virtual environment, virtual wall.

In creating this device, we also set out to implement bilateral
position coupling with the machine. We were unable to imple-
ment this however because of limitations of the CNC software.
The GRBL interface could only support communicating up
to 10 times per second, which was not adequate enough for
position coupling.

The nature of CNC-machine control also meant that new
target positions would be added into a stack of previous target
positions. This created problems when the user would move
at high speeds, as the machine would move to previous target
points before reaching the current position.

Position clutching was also implemented to increase the
available workspace. Since the control of it was limited to
the keyboard, it was not included in the demo.

Our GitHub for this project can be found here, and a
Youtube video of it can be found here.

V. CONCLUSION

In this work we present a 2-dof Hapkit device that is used to
control a CNC-welder. We implemented force-fielding to assist
in seam-awareness, as well as clutching, position scaling, and
damping. All resulted in stable control except for damping,
which introduced instability to our system. Our interactive
demos showed that the force-fielding produced a convincing
effect for the user, however working with the limitations
of serial and machine-communication limited our ability to
effectively control the machine.

REFERENCES

[1] M. O. Martinez, J. Campion, T. Gholami, M. K. Rittikaidachar, A. C.
Barron, and A. M. Okamura, “Open source, modular, customizable, 3-d
printed kinesthetic haptic devices,” in IEEE World Haptics Conference.
IEEE, 2017, pp. 142–147.

[2] J. Abbott, P. Marayong, and A. Okamura, “Haptic Virtual Fixtures
for Robot-Assisted Manipulation.” Accessed: Apr. 29, 2024.
[Online]. https://www.telerobotics.utah.edu/uploads/Main/Abbott
RoboticsResearch07.pdf.

[3] “Design and Control of a Pantograph Robot.” Design and Control
of a Pantograph Robot - Northwestern Mechatronics Wiki, 17 July
2010, hades.mech.northwestern.edu/index.php/Design and Control of
a Pantograph Robot.

https://github.com/soggy-soup/haptic_teleoperation_of_cnc_welder.git
https://youtu.be/vmIHNyCN1GE
https://www.telerobotics.utah.edu/uploads/Main/Abbott_RoboticsResearch07.pdf
https://www.telerobotics.utah.edu/uploads/Main/Abbott_RoboticsResearch07.pdf
hades.mech.northwestern.edu/index.php/Design_and_Control_of_a_Pantograph_Robot
hades.mech.northwestern.edu/index.php/Design_and_Control_of_a_Pantograph_Robot

	Introduction
	Background
	Methods
	Hardware Design and Implementation
	Control
	Virtual Fixture Rendering

	Results and Discussion
	Conclusion
	References

